EBOO: Extra-Corporeal Blood 223 Ozonation and Oxygenation Dialysis Treatment

Fan

03

Brenden Cochran, NMD

© Dr. Brenden Cochran

Many varieties of EBOO

EBOO: the History

According to Dr. Bocci's book in Ch. 17, he first heard about methods to activate immune cells in cancer patients during extracorporeal circulation in blood.

1992 is when Dr. Bocci first started examining what role a dialysis like process would have help his terminal cancer patients.

It was then Dr. Bocci who sought out the Director of the Nephrology and Dialysis Unit, Prof. Nicola Di Paolo, to discuss the meaning and implications. (Bocci et al., 1996b,2001c;Di Paolo et al., 2000)

Around that same time, other people around the world, in places such as Africa and Russia, began researching EBOO.

It took about a decade of laboratory, preclinical and preliminary clinical

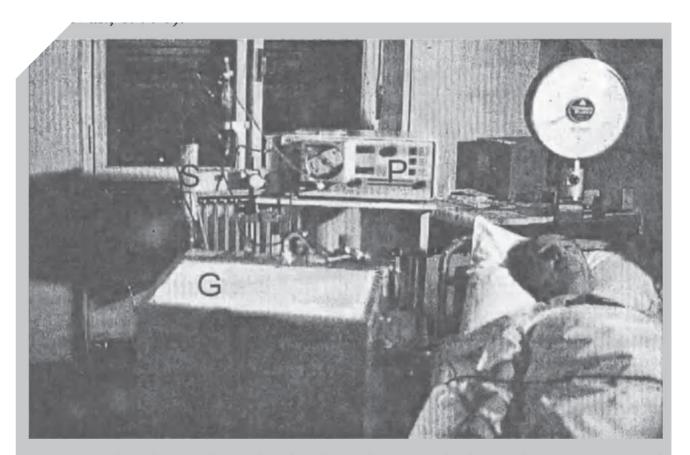


Figure 74. After the preclinical study, the author was the first volunteer to prove tha prporeal blood circulation against O_2 - O_3 was atoxic. P: Roller blood pump; S: Holly fibre oxygenator-ozonizer; G: Ozone generator. EBBO: The History

In 1993 Dr. Bocci
 was the first to
 receive EBOO with
 ozone and It was
 carried out by Dr.
 Nicola Paolo

CHAPTER 17

EXTRACORPOREAL BLOOD CIRCULATION VERSUS O₂-O₃ (EBOO)

"Est quadam prodire tenus, si non datur ultra" Horace (65-8 B.C.), Epist., 1, 1, 32 (At least we have done a first step) after several phases, the final EBOO system is shown in Figure 72. It consists of a precise ozone generator, fed by therapeutic oxygen on line, able to deliver a constant flow of the gas mixture (~ 99% O₂- ~ 1% O₃) for hours. We have assessed biochemical parameters and toxicity using O₃ concentrations from 3 to 80 µg/ml, but now we routinely use 4 µg/ml throughout the session. The O₃ concentration is continuously monitored by photometry and visualized in real time. We periodically check the photometry by iodometric titration.

EBOO: the History

For next few years they started a pilot study (Di Paolo et al., 2000) During this trial they were searching for the optimal O3 concentration. Overall, those treated showed very great improvement that lasted several months. He concluded to maintain the improvement, the treatment should be resumed after 3-6 months

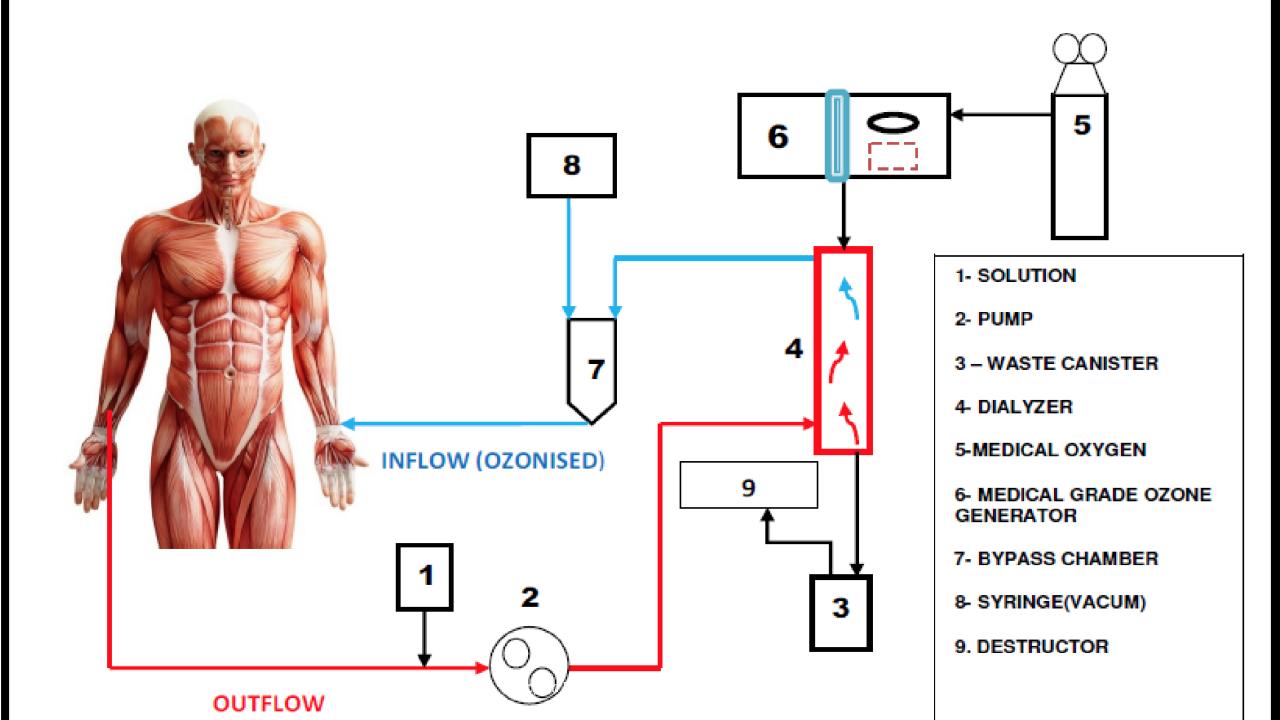
coated oxygenator and by June 2001 the number of patients had grown to 21. Thus we were able to draw some conclusions:

- a) the extracorporeal circulation of blood against O_2 - O_3 has become a reality;
- b) all the technical and methodological aspects have been resolved satisfactorily;
- c) owing to the improved efficiency of the oxygenator, up to 5 L of blood can be exposed to very low O_3 concentrations (3-4 μ g/ml). To enhance ozone tolerance the first and second EBOOs last only 30 and 45 min, respectively;
- d) as occurs in the pulmonary circulation, the great efficiency of the hollow fibres allows total gas exchange in one minute;
- e) both oxygenation and ozonization remain effective without any increase of venous pressure;
- f) in arteriopathic patients (grade III and IV) subjective and objective clinical improvements have often been noted after the first treatment. Orthodox treatments usually do not provide such improvement;
- g) neither metabolic derangement nor changes in blood chemistry nor any toxic effect has been observed during or months after the cycle;

History of modern version of the Ozone Generator

In early year of 2000, doctors in Malaysia first learned about ozone therapy From 2002 - 2020, the Malaysians continued to build EBOO machines. Simultaneously, in Ukraine they were developing their own versions, without the dialyzer.

EBOO modality efficacy widely spread in neighbouring countries and demand increased from Philippines, Indonesia and Myanmar.


The original EBOO machines were quite bulky and very heavy.

Smaller portable units expanded widely to many overseas countries such as Mexico, Africa, China, Japan, Thailand, Singapore and the Dominican Republic.

THE STRATOS EBOO /F

EXTRACORPOREAL BLOOD OXYGENATION, OZONATION & FILTRATION

Claims

Purify the blood

Kill infections in the blood

The material in the waste container is toxins pulled out

Miracle cure

Reduce Beta 2 Microglobulin (inflammatory)

Acetal (Delrin®)	C - Fair
Aluminum	A - Excellent
Brass	B - Good
Bronze	B - Good
Buna N (Nitrile)	D - Poor
Carbon Steel	C - Fair
Cast iron	C - Fair
Ceramic	A - Excellent
ChemRaz (FFKM)	B - Good
Copper	A - Excellent
CPVC	A - Excellent
EPDM	B - Good
Fluorocarbon (FKM)	A - Excellent
Hastelloy-C®	A - Excellent
HDPE	B - Good
Hypalon®	A - Excellent
Hytrel®	C - Fair
Kalrez	A - Excellent
Kel-F®	A - Excellent
LDPE	C - Fair
Natural rubber	D - Poor
Neoprene	C - Fair
NORYL®	B - Good
Nylon	D - Poor
Polycarbonate	A - Excellent
Polyetherether Ketone (PEEK)	A - Excellent
Polyethylene	B - Good
Polypropylene	B - Good
Polyurethane	A - Excellent
PTFE	A - Excellent
PVC	B - Good
PVDF (Kynar®)	A - Excellent
Silicone	A - Excellent
stainless steel - 304	B - Good
stainless steel - 316	A - Excellent
Titanium	A - Excellent
Tygon®	B - Good
Viton®	A - Excellent

https://www.oxidationtech.com/ozone_resistant_materials

Polysulfone Chemical Compatibility Chart

Chemical	Rating	с
N-butyl acetate	X	C
N-butyl alcohol ^{3,4}	В	C
N-decane ^{3,4}	В	C
N-Heptane ¹	Α	C
N-methyl-2-pyrrolidone	X	C
NALCON 7330 (<1%)	Α	C
NALCON 7647 (<1%)	A	C
NALCON 7678 (<1%)	Α	C
Naphtha VMOP	Х	C
Naphthalene, vapor	X	C
Nitric acid, 5% ^{3,4}	В	C
Nitric acid, 10% ^{3,4}	В	C
Nitric acid, 20% ^{3,4}	В	C
Nitric acid, 25% ^{3,4}	В	C
Nitric acid, 40% ^{3,4}	В	C
Nitric acid, 50% ^{3,4}	В	C
Nitric acid, 71%	X	C
Nitric acid, 6N	Х	F
Nitro Methane	X	F
Nitrobenzene	X	F
Nitrobenzene	Х	F
Nitromethane	Х	F
Nitropropane	Х	F
N-octane ^{3,4}	В	F
O-dichlorobenzene	Х	F
Oil (ASTM #1)	Α	F
Oil (ASTM #2)	A	F

Chemical	Rating
Oil (ASTM #3) ²	Α
Oil, cedarwood ^{2,3}	В
Oil, cinnamon ^{2,3}	В
Oil, corn ²	Α
Oil, mineral ¹	Α
Oil, olive ³	Α
Oil, orange ^{2,3}	В
Oil, pine ^{2,3}	В
Oil, vegetable ²	Α
Oleic acid ²	Α
Olive oil ³	Α
Orange oil ^{2,3}	В
Oxalic acid, 10%	Α
Oxalic acid, 20%	А
Oxygen	Α
Ozone	А
Ozone, pure	Α
P-chloroacetophenone	Х
P-dichlorobenzene	X
Peanut oil ²	Α
Pentane	Α
Peracetic acid, 0.1N	Α
Perchloric acid	Х
Perchloroethylene	Х
Permatex ²	Α
Petroleum ^{2,3}	Х
Petroleum based oils	Α

ver 04-Feb-2018

A = Little or no interaction B = Slight interaction X = Not recommended Room temperature = 20°C or 68°F(1) Elevated temperatures may reduce resistance --- (2) Exposure to elevated stress may damage polymer

(3) Prolonged exposure may reduce resistance --- (4) Room Temperature only

It is the sole responsibility of the system designer and user to select products suitable for their specific application requirements and to ensure proper installation, operation, and maintenance of these products. Material compatibility, product ratings and application details should be considered in the selection. Improper selection or use of products described herein can cause personal injury or product damage.

4091 S. Eliot St., Englewood, CO 80110-4396 Phone 303-781-8486 I Fax 303-761-7939 Industrialspec.com I Ismedspec.com © Copyright 2019 Industrial Specialties Mfg.

Polymer and Ozone

- <u>https://polymerdatabase.co</u> m/polymer%20chemistry/Oz one.html
- <u>https://onlinelibrary.wiley.co</u> m/doi/10.1002/app.1979.070 231113

Journal of Applied Polymer Science / Volume 23, Issue 11 / p. 3281-3288

Article

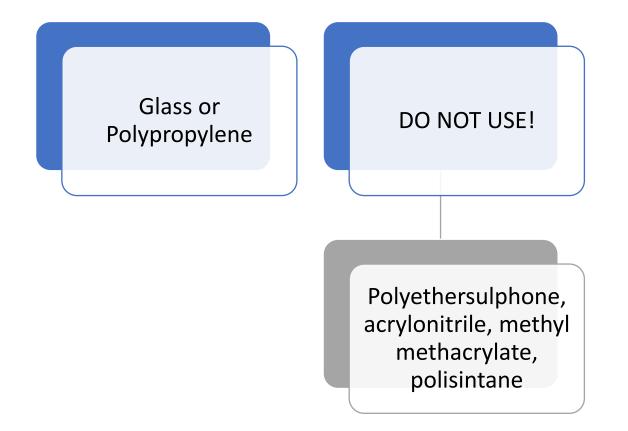
Ozone treatment of water-soluble polymers. IV. Ozone degradability of watersoluble polymers

Junzo Suzuki, Naoki Taumi, Shizuo Suzuki

First published: 1 June 1979 https://doi.org/10.1002/app.1979.070231113 Citations: 12

Abstract

The ozone degradability of water-soluble polymers, i.e., polyethylene glycol, poly(vinyl alcohol), poly(vinyl pyrrolidone), polyacrylamide, and sodium polyacrylate, was studied in the aspects of ozonization rate and degradation efficiency. The reactions of ozone with polymers were first order, respectively, with respect to ozone and polymer, except poly(vinyl alcohol) under basic condition (1/2 order with respect to ozone). The reaction rate of poly(vinyl pyrrolidone) was the largest, while those of polyacrylamide and sodium polyacrylate were almost zero. The absorption rate of ozone into the polymer solution was affected by the reaction rate, the foaming property of solution, and the self-decomposition of ozone. In terms of chain breakage and complete oxidation to CO₂, the degradation efficiency of polyethylene glycol was the best, and that of poly(vinyl pyrrolidone) was poor in spite of the high reaction rate. A little degradation was observed also in the case of polyacrylamide and sodium polyacrylamide and sodium polyacrylamide and sodium polyacrylamide.



CTA =Cellulose Triacetate

Excellent low molecular substances removal, BUN, Phosphate, etc Uniformed pore size membrane helps higher β2 Microglobulin removal and minimal albumin loss • Polpypropylene and polyethersulfone

Materials

Continuous flow of oxygen and/or ozone administered to blood.

Blood is filtered through a dialyzer which allows maximum surface contact.

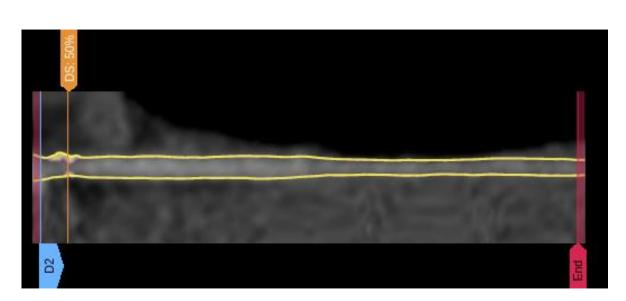
A peristaltic pump is used to move blood from one vein to another vein over a 1 hour time period.

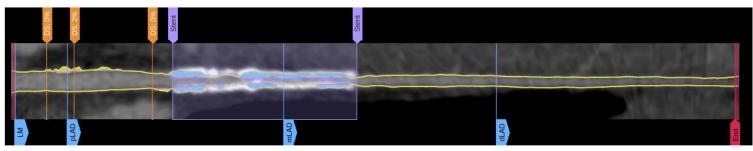
Total 1.8 – 3 liters of blood is filtered and enriched with ozone/oxygen before being returned to the body.

EBOO

Clinically Researched Usages

Recognized by International Society of Blood Purification as method that can reduce viral load in patients with chronic hepatitis.


Clinically effective in peripheral artery disease


 Necrotizing faciiitis, severe peripheral arterial dz, coronary disease, cholesterol embolism, severe dyslipidemia, Madelung disease and sudden deafness of vascular orgin.

Proposed Indications

- Severe peripheral artery disease
- Cardiac ischemia
- Sever dyslipidemia
- Necrotizing fasciitis
- Severe bacterial infections that are resistant to antibiotics
- Ischemic stroke
- Chronic heart failure
- Viral hepatitis type A, B, C
- Chronic inflammatory process
- Pre-treatment for patients who are planning to undergo antiviral therapy medications

CT Angiography with AI enhancement

Possible Other indications

+

0

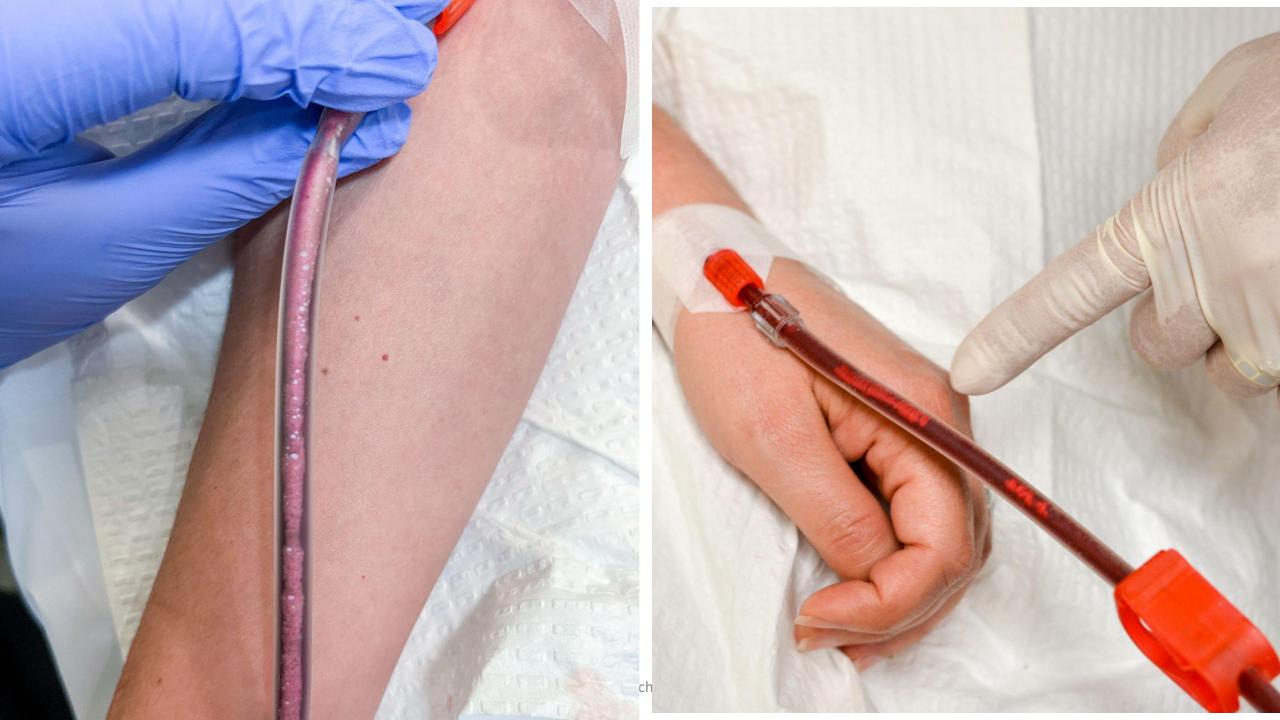
- Other viral illness (EBV, CMV, Covid-19, etc)?
- Chronic bacteria (mycoplasma, c. pneumonia, bartonella, lyme and coinfections)?
- Biofilm removal or disruption
- Reduction in metals
- Reduction in microplastics
- Reductions in other toxicants (mycotoxins, VOC, etc)?
- Proactive service of blood for healthy aging?

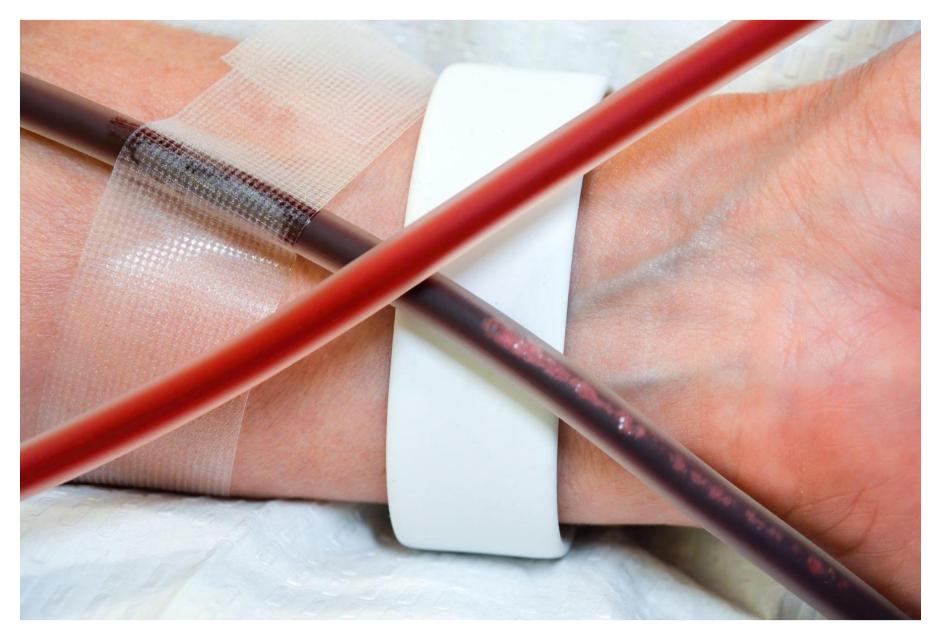
Cosco	International Scientific Committee of Ozone Therapy Tel/Fax (+34) 913515175. Cell Phone (+34) 669685429 Avenida Juan Andrés 60. Local 1 – Bajo Izquierdo 28035, Madrid (Spain) <u>info@isco3.org</u> www.isco3.org	SOP: ISCO3/MET/00/22 Version: 1 Date: 26/11/2016 Page 1 of 9
-------	--	---

Extracorporeal blood oxygenation-ozonation (EBOO) ISCO3/MET/00/22

What is EBOO/F?

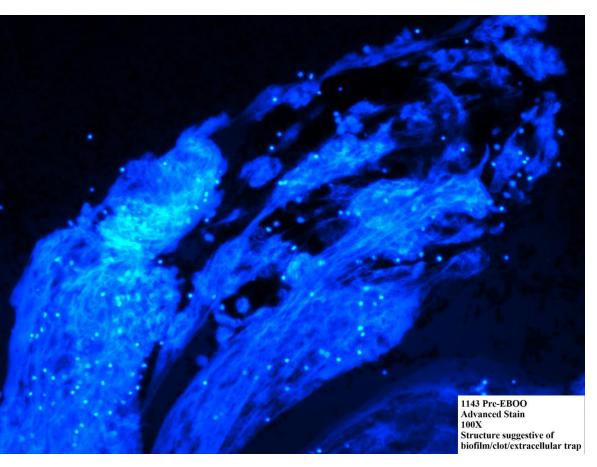
- This blood is ozonated and then it is returned into the body, through an additional vein. This process continues over a 45 min-1-hour time period, with 1.8 to 3 liters of blood being filtered and enriched with ozone before being returned to the body
- The concentration is 1LPM of oxygen at 3.5-7 gamma. We use 7500 IU heparin in 500 ml NS
- The power of EBOO lies in both the ozone and dialyzer, which separates the blood and allows for maximum surface contact.


Credit to Angie Valdivieso, BSN and Asher Milgram, PhD for research and pictures in next 9-10 slides

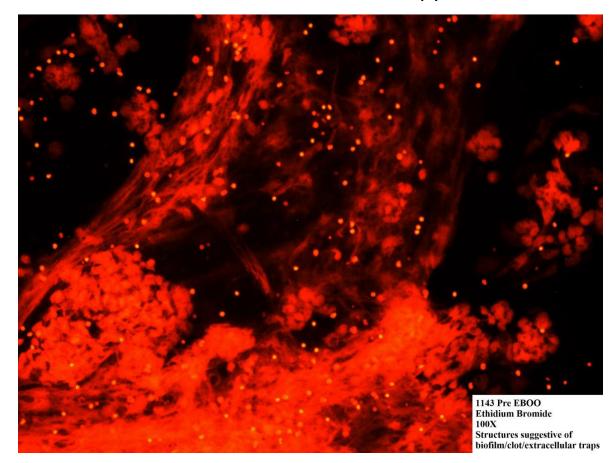


What is the "Gunk" in the Dialyzer?

• Based on lab test analysis, the filter purifies mostly lipid particles. We have also found heavy metals, for example mercury, lead & aluminum. Lab tests have also identified biofilm, micro-clots, yeast and fungi.

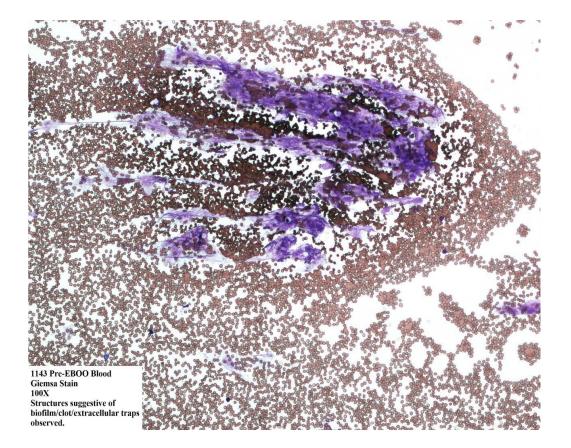

• This varies by patient and conditions and is all on a voluntary basis, no force can be given to increase or decrease what is excreted.

• We do advise as part of the session you include a IVNT bag.

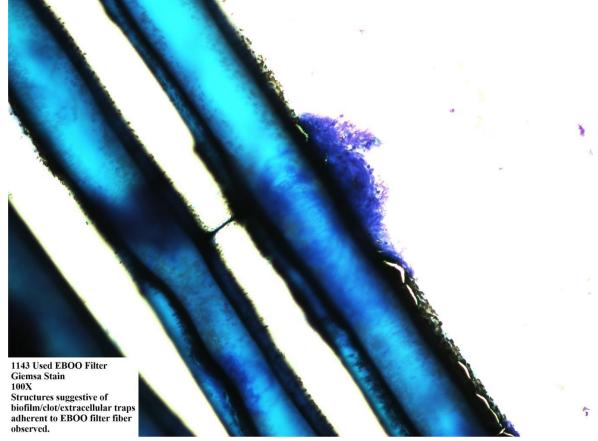


Pre-EBOO Blood Analysis

Blood clot/Biofilm microscopy

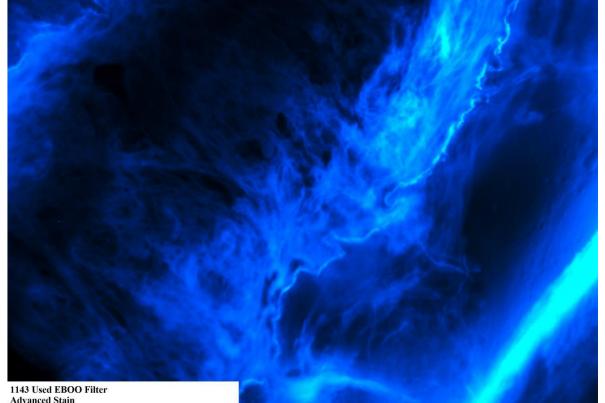


Blood clot/Biofilm microscopy

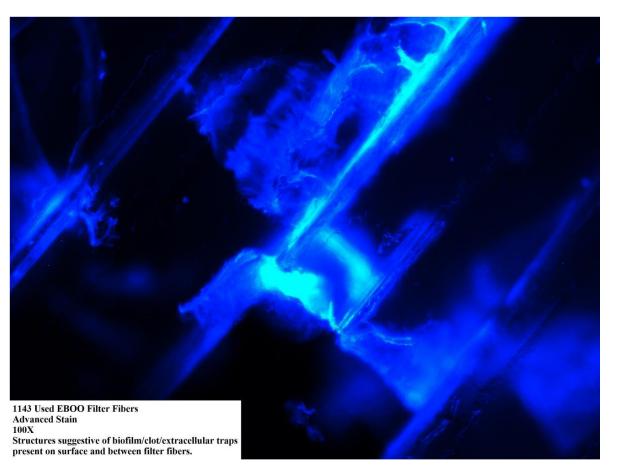


Pre-EBOO Blood Analysis

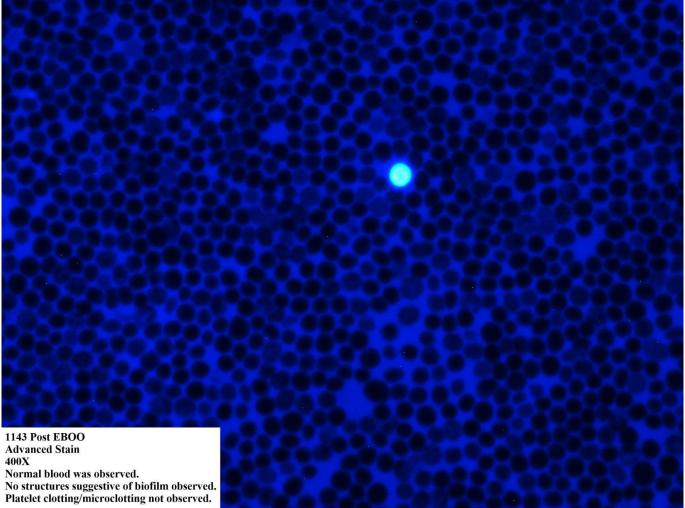
Blood clot/Biofilm in live blood



Biofilm/Clot adherent to EBOO dialyzer fiber

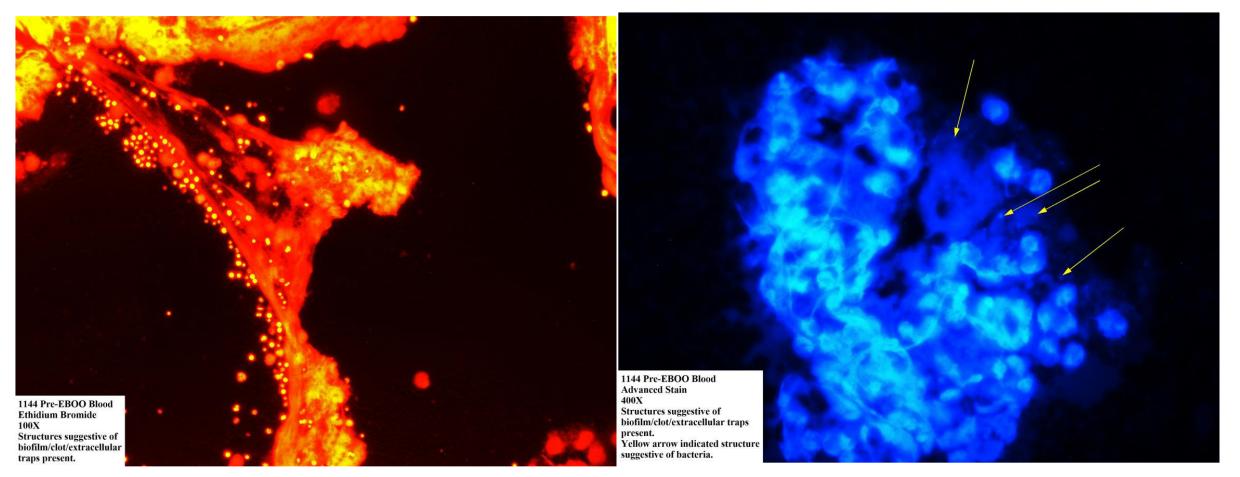


Used EBOO Filter


Blood clot/Biofilm in EBOO filter fiber

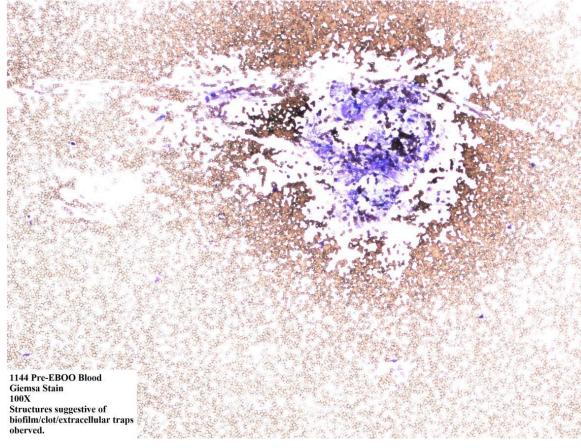
1143 Used EBOO Filter Advanced Stain 400X Structures suggestive of biofilm/clot/extracellular traps present on EBOO filter fiber. Blood clot/Biofilm in EBOO filter fiber

Post EBOO treatment live blood

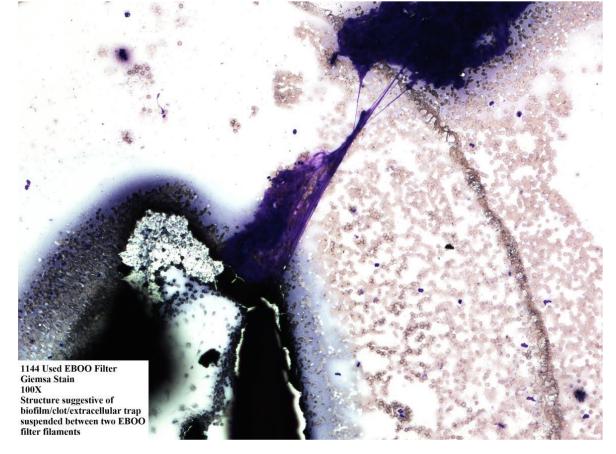


(c) Dr. Brenden Cochran, NMD, FAAO

Pre EBOO blood analysis

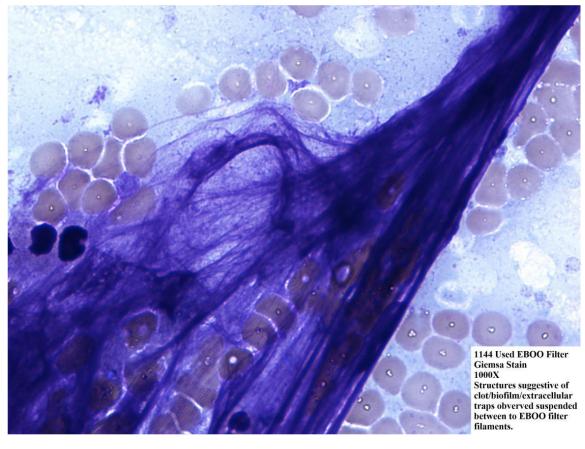

Blood clot/Biofilm microscopy

Blood clot/Biofilm microscopy

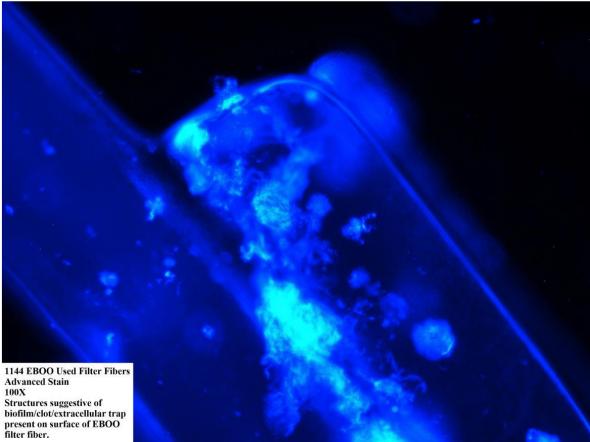


Pre-EBOO Blood Analysis

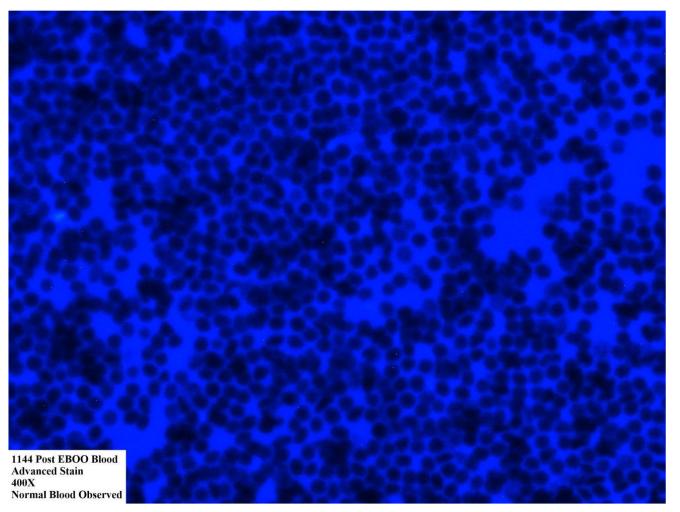
Blood clot/Biofilm in live blood



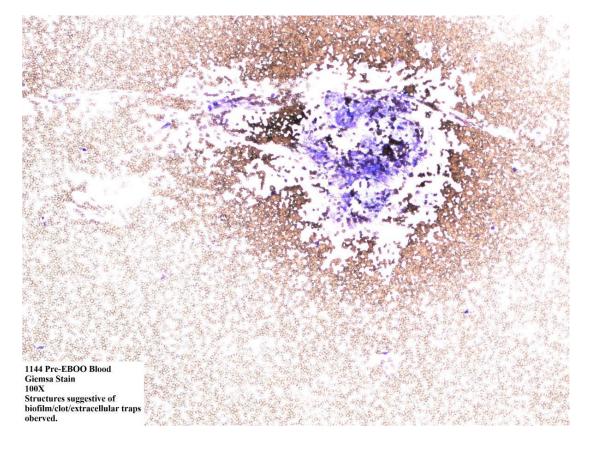
Biofilm/Clot adherent to EBOO dialyzer fiber



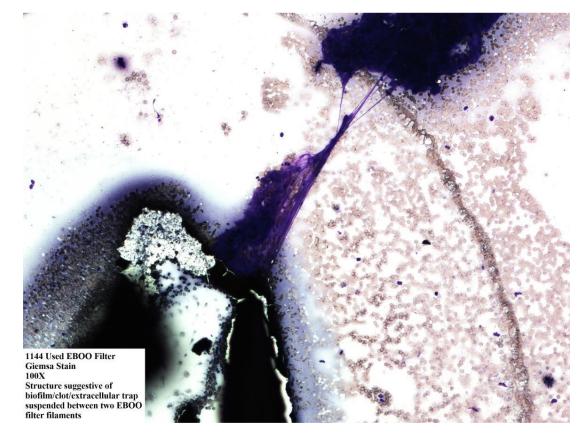
Used EBOO Filter


Blood clot/Biofilm in EBOO filter fiber

Blood clot/Biofilm in EBOO filter fiber



Post EBOO treatment live blood



Pre-EBOO Blood Analysis

Blood clot/Biofilm in live blood

Biofilm/Clot adherent to EBOO dialyzer fiber

(c) Dr. Brenden Cochran, NMD, FAAO

Heavy Metals

							Heavy Metal		
Date	Age	Sex	Name	Aluminum	Arsenic	Cadmium	Lead	Mercury	
12/16/19	28	m	JR						- 100 000
1/11/20					80	8.9	0.8	3.3	0.6
1/8/20					2.000		A.B.:		
1/24/20									
2/20/20					44	5.7	0.3	2.2	<di< td=""></di<>
2/20/20									
		ř.					Heavy Metal	4. ÷	
Date	Age	Sex		Name	Aluminum	Arsenic	Cadmium	Lead	Mercury
12/11/19	25	m	JC						
12/16/19					85	8.2	0.3	3.6	1.9
1/24/20					20.0		-		
2/25/20					78	5	0.5	<di< td=""><td><di< td=""></di<></td></di<>	<di< td=""></di<>
2/20/20					274.0				
0.0 0.0									

Heavy Metals

	Sex					- 5 k	(d		Heavy Metal		
Age		Name	Aluminum	Arsenic	Cadmium	Lead	Mercury				
45		AV									
			57	140	1.8	6.1	1.1				
			1.4	9.7	1.3	3.8	1.9				
45							10.000				
	45	45	45 AV	45 AV 57	Age Sex Name Aluminum Arsenic 45 AV	Age Sex Name Aluminum Arsenic Cadmium 45 AV Image: AV	45 AV 57 140 1.8 6.1 1.4 9.7 1.3 3.8				

EBOO /F Heavy Metal Analysis EBOO /F – Heavy Metals Analysis Week 4 protocol:

Week 1.

Day 1 – Chelation: EDTA; Day 2 – IV Mineral Repletion; Day 3 – EBOO Week 2.

Day 1 – Chelation: EDTA; Day 2 – IV Mineral Repletion; Day 3 – EBOO Week 3.

Day 1 – Chelation: EDTA; Day 2 – IV Mineral Repletion; Day 3 – EBOO Week 4.

Day 1 – IV Mineral Repletion; Day 2 – EBOO

EBOO /F – Heavy Metals Analysis

This was the IV Drip used:

Sodium Chloride	250ml
EDTA Calcium 300 mg/m (1.5 ml =450 mg dose) to (3.5 ml=1050mg	Titrate
dose)	Weekly
	Start at 450mg up to 1050mg
Methylcobalamin 1000mcg/ml	1ml
B-Complex	1ml
Followed by:	
Glutathione	10ml
Saline (c) Dr. Brenden Cochran, NMD, FAAO	100ml

52-YEAR-OLD FEMALE (HIGH LEAD) (5 CHELATION AND EBOO SESSIONS -USING EDTA FORMULA AT END LECTURE-

(c) Dr. Brenden Cochran, NMD, FAAO

Heavy Metal Stool (52 year old female) (10-2022) Pre Post

Great Plains Laboratory 9221 Quivira Road Overland Park, KS 66215 U.S.A.		Female		eu 10/07/2022	Client #:47938 Rupa Health 177 Townsend Street Unit 528 San Francisco, CA 94107 U.S.A.				
Toxic Metals	Result	Unit	Percentile 68 th 95 th	Reference Interval	Toxic Metals	Result	Unit	Percentile 68 th 95 ^{tl}	h Reference Interval
Antimony	0.220	mg/kg Dry Wt		< 0.050	Antimony	0.019	mg/kg Dry Wt		< 0,050
Arsenic	0.05	mg/kg Dry Wt		< 0.20	Arsenic	0.08	mg/kg Dr <mark>y Wt</mark>		< 0.20
Beryllium	0.003	mg/kg D <mark>ry Wt</mark>		< 0.011	Beryllium	0.006	mg/kg pry Wt		< 0.01
Bismuth	0.007	mg/kg <mark>Ø</mark> ry Wt		< 0.100	Bismuth	0.006	mg/kg Dry Wt		< 0.100
Cadmium	0.46	mg/kg <mark>Dry Wt</mark>		< 0.50	Cadmium	0.22	mg/kg Dry Wt		< 0.50
Cesium	0.032	mg/kg <mark>D</mark> ry Wt		< 0.1	Cesium	0.031	mg/kg <mark>Dry Wt</mark>		< 0.1
Copper	39	mg/kg D <mark>ry Wt</mark>		< 60	Copper	40	mg/kg yry Wt		< 60
Gadolinium	0.130	mg/kg Dry Wt		< 0.03	Gadolinium	0.046	mg/kg Dry Wt		< 0.0%
Lead	47.9	mg/kg Dry Wt		< 0.30	Lead	0.16	mg/kg Dry Wt		< 0.30
Manganese	78.51	mg/kg Dry Wt		< 200	Manganese	122.1	mg/kg Dry Wt		< 200
Mercury	<dl< td=""><td>mg/kg Dry Wt</td><td></td><td>< 0.050</td><td>Mercury</td><td>0.029</td><td>mg/kg Dry Wt</td><td></td><td>< 0.050</td></dl<>	mg/kg Dry Wt		< 0.050	Mercury	0.029	mg/kg Dry Wt		< 0.050
Nickel	6.4	mg/kg Dry Wt		< 8.0	Nickel	6.2	mg/kg Dry Wt		< 8.0
Platinum	<dl< td=""><td>mg/kg Dry Wt</td><td></td><td>< 0.003</td><td>Platinum</td><td><dl< td=""><td>mg/kg Dry Wt</td><td></td><td>< 0.003</td></dl<></td></dl<>	mg/kg Dry Wt		< 0.003	Platinum	<dl< td=""><td>mg/kg Dry Wt</td><td></td><td>< 0.003</td></dl<>	mg/kg Dry Wt		< 0.003
Thallium	0.009	mg/kg Dry Wt		< 0.020	Thallium	0.010	mg/kg Dry Wt		< 0.020
Tungsten	0.063	mg/kg Dry Wt		< 0.130	Tungsten	0.024	mg/kg Dry Wt		< 0.130
Uranium	0.133	mg/kg Dry Wt	Δ	< 0.100	Uranium	0.126	mg/kg Dry Wt		< 0.100
Water Content	Result	Unit	-2SD -1SD Mean +1SD +2S		Water Content	Result	Unit	-2SD -1SD Mean +1Si	Reference Interval
Water Content	88.0	%		66.3 - 78.8	Water Content	88.7	%		66.3-78.8

PRE (Non Provoked -Urine Heavy Metals (11-2022)

Toxic Metals; urine

	TOXIC METALS								
		RESULT µg/g Creat	REFERENCE	WITHIN REFERENCE	OUTSIDE REFERENCE				
Aluminum	(AI)	1.2	< 25	Þ					
Antimony	(Sb)	0.032	< 0.18	-					
Arsenic	(As)	9.5	< 50	-					
Barium	(Ba)	0.35	< 5	•					
Beryllium	(Be)	<dl< td=""><td>< 0.01</td><td>1</td><td></td></dl<>	< 0.01	1					
Bismuth	(Bi)	0.11	<1	 -					
Cadmium	(Cd)	0.54	< 0.9						
Cesium	(Cs)	6.9	< 10						
Gadolinium	(Gd)	0.03	< 0.8	•					
Lead	(Pb)	1.2	< 1.2						
Mercury	(Hg)	0.099	< 1.3	•					
Nickel	(Ni)	3.7	< 5						
Palladium	(Pd)	30	< 0.3						
Platinum	(Pt)	0.07	< 0.1						
Tellurium	(Te)	0.057	< 0.5	-					
Thallium	(TI)	0.20	< 0.5						
Thorium	(Th)	<dl< td=""><td>< 0.02</td><td>1</td><td></td></dl<>	< 0.02	1					
Tin	(Sn)	0.23	< 5	Þ					
Tungsten	(W)	0.30	< 0.4						
Uranium	(U)	0.023	< 0.03						
		URINE CE	REATININE						
		RESULT	REFERENCE	-2SD -15	SD MEAN +1SD +2SD				
Creatinine		110	30-225		-				

PRE (11-2022) AND POST (5-2023) (Provoked-Urine Heavy Metals

Toxic Metals; urine

Creatinine

TOXIC METALS								
	RESULT μg/g Creat	REFERENCE INTERVAL	WITHIN REFERENCE					
Aluminum (Al)	22	< 25						
Antimony (Sb)	0.052	< 0.18						
Arsenic (As)	7.2	< 50	-					
Barium (Ba)	1.3	< 5						
Beryllium (Be)	<dl< td=""><td>< 0.01</td><td></td><td></td></dl<>	< 0.01						
Bismuth (Bi)	0.053	< 1	•					
Cadmium (Cd)	2.3	< 0.9						
Cesium (Cs)	7.1	< 10						
Gadolinium (Gd)	0.45	< 0.8						
Lead (Pb)	32	< 1.2						
Mercury (Hg)	0.054	< 1.3						
Nickel (Ni)	5.1	< 5						
Palladium (Pd)	27	< 0.3						
Platinum (Pt)	<dl< td=""><td>< 0.1</td><td></td><td></td></dl<>	< 0.1						
Tellurium (Te)	<dl< td=""><td>< 0.5</td><td></td><td></td></dl<>	< 0.5						
Thallium (TI)	0.38	< 0.5						
Thorium (Th)	0.020	< 0.02						
Tin (Sn)	0.51	< 5	-					
Tungsten (W)	0.18	< 0.4						
Uranium (U)	0.023	< 0.03						
	URINE CF	REATININE						
	RESULT	REFERENCE INTERVAL	-2SD -1	SD MEAN +1SD +2SD				

30-225

79.4

Toxic Metals; urine

		TOXIC	METALS		
		RESULT μg/g Creat	REFERENCE INTERVAL	WITHIN REFERENCE	OUTSIDE REFERENCE
Aluminum	(AI)	12	< 25		
Antimony	(Sb)	0.054	< 0.18		
Arsenic	(As)	7.3	< 50	-	
Barium	(Ba)	1.3	< 5		
Beryllium	(Be)	<dl< td=""><td>< 0.01</td><td>I</td><td></td></dl<>	< 0.01	I	
Bismuth	(Bi)	0.11	< 1	-	
Cadmium	(Cd)	2.7	< 0.9		
Cesium	(Cs)	7.8	< 10		
Gadolinium	(Gd)	0.35	< 0.8		
Lead	(Pb)	9 0	< 1.2		
Mercury	(Hg)		< 1.3	I	
Nickel	(Ni)	6.4	< 5		•
Palladium	(Pd)	25	< 0.3		
Platinum	(Pt)	<dl< td=""><td>< 0.1</td><td>I</td><td></td></dl<>	< 0.1	I	
Tellurium	(Te)	<di< td=""><td>< 0.5</td><td>I</td><td></td></di<>	< 0.5	I	
Thallium	(TI)	0.28	< 0.5		
Thorium	(Th)	0.030	< 0.02		•
Tin	(Sn)	0.87	< 5	-	
Tungsten	(W)	0.35	< 0.4		
Uranium	(U)	0.041	< 0.03		
		URI <u>NE C</u> R	EATININE		
		RESULT mg/dL	REFERENCE INTERVAL	-2SD -1S	D MEAN +1SD +2SD
Creatinine		75.2	30 – 225	-	

Microplastics

Environmental Technology & Innovation Volume 26, May 2022, 102271

Oxidation of bisphenol-A by ozone microbubbles: Effects of operational parameters and kinetics study

1. Introduction

Endocrine-disrupting chemicals (EDCs) are among the top <u>emerging</u> <u>contaminants</u> as they are subclasses of the ubiquitous organic pollutants present in various types of water (i.e., seawater, streams, groundwater, drinking water, and wastewater) at very low concentrations. They have become the focus of environmental research in the recent years...

They often have adverse impacts on both human and natural organisms at trace or low concentrations, which may cause disruption of the endocrine systems. Thus, it is desirable to remove these chemicals from water.

1(C15H16O2) + 12(O3) => 8(H2O) + 15(CO2) polycarbonate from bottled water

(c) Dr. Brenden Cochran, NMD, FAAO

Microplastics

• There has been research in recent years that shows that microplastic pollution has been detected in human blood for the first time, with scientists finding the tiny particles in almost 80% of the people tested.

<u>https://www.sciencedirect.com/science/article/pii/S0160412022001258</u>

• The discovery shows the particles can travel around the body and may lodge in organs.

• These particles originate from containers, plastic bottles, clothing, and other products that we use, as well as from the environment itself.

• The impact on health is as of yet unknown.

• But researchers are concerned as microplastics cause damage to human cells in the laboratory and air pollution particles are already known to enter the body and cause millions of early deaths a year.

EBOO/F - Dialyzer Microplastics Analysis using AUTHENTIC RENAK 1500 @ 7 gamma

Pre_EBOO/F Microplastics Analysis

1788 Memorial Highway, Sale 231, Tamps, 71 282 288 Revis 130 North, Creaminson, NUCKNY Phase (\$12)-285-4712 (\$16) 898-580

EMBL Drder Ho. 362200454 Sample)d Received 8/31/2023 Date Printed 8/31/2023 Reported 8/31/2023 Reported By: E.Minico

Attra: Asperting

Serifer, CA 94710

Finance: 308,258,8308

reporting ("posimpleisbucom

Simple Lab

1345 4th Street

1200 Hermanial Highwey, Julie 111, Tarrya, F. 1301 200 Royale 128 Novily, Companismon, NJ 08007 Phone: (E13)-280-8110 (2016) 438-4808

EM14. Onder Sampletsch Hoo Date Peige Date Phy Page Hz

Post EBOO/F Microplastics Analysis

EM3L Order Na. 352203453 SampletS Received: 3577/2022 Date Reported: 3571/2022 Date Printed: 55731/2032 Reported By: C.Mirica

Procurement of Samples and Analytical Overview.

The sample submitted for analysis arrived at EMSL Analytical on 8/17/2012. The package arrived in satisfactory condition with no evidence of damage to the contents. The data reported herein has been obtained using the following equipment and methodologies.

Methods & Equipment: Polarized Ught Microscopy (PLM) – Jeiss, Universal Perceptophic Microscope Refeated Ught Microscopy (RLM) – Alitan, JP Microscope Filorescopes Witzescope (RLM) – Zeiss, Rowescope Witzescope

Analyzed by: 34 August 3632 light discussion 1000 Senior Meteriali-Scientist Reviewed/Approved by: No to m 30 August 2022 Dependentifica, AS-2. CONTRACT delected directed

Procurement of Samples and Analytical Overview.

The sample submitted for analysis arrived at BMS. Analytical on I/17/3022. The package arrived in unitifactory condition with no evidence of damage to the contents. The data reported herein has been obtained using the following expignment and methodologies.

Methods & Equipment: Polarised Light Wicroscopy (PLM) – Zalis, Universal Partnergergalula: Microscope Reflected Light Microscope (RLM) – Alkon, DF Microscope Harresterne Microscope (RLM) – Zhio, Flancescope

the boot is presented. Service Wintersinity Scientific

26 August 2022

line.

Reviewed/Approved by:

Analyzed by:

An the sec Support and an IA S

Jationatory Silection

31. August 2022

mission from the original

EBOO/F - Dialyzer Microplastics Analysis

Pre EBOO/F Microplastics Analysis

5750 Menorial Highway, Solid LLI, Tampa, A. 1983 BUILDINGS AND READ, CONSISTENCE, MURRINE, Phone or the case of the little interface.

Ann. Asparates Disciples Sally 3346 4th Street. Barbley, CA. 96710 reporting/inputry/alate.com Phone 208-539-6008

ENGL-Degree Proc. DESCRIPTION Interpletel Residuesh 8/33/3002 Date Reported. 8/31/3000 EnterPrintent 8/91/3000 Reported By: E.Mirice

Figure 1: Microplastics observed in sample HNDRRU.

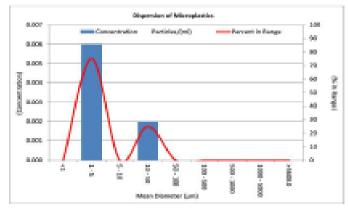


Figure 4: Histogram showing the particle size dispersion of sample HYDRRU

Post EBOO/F Microplastics Analysis

Berlines, CA. 947101 reporting proving is had a corre-Phone 108-118-4383

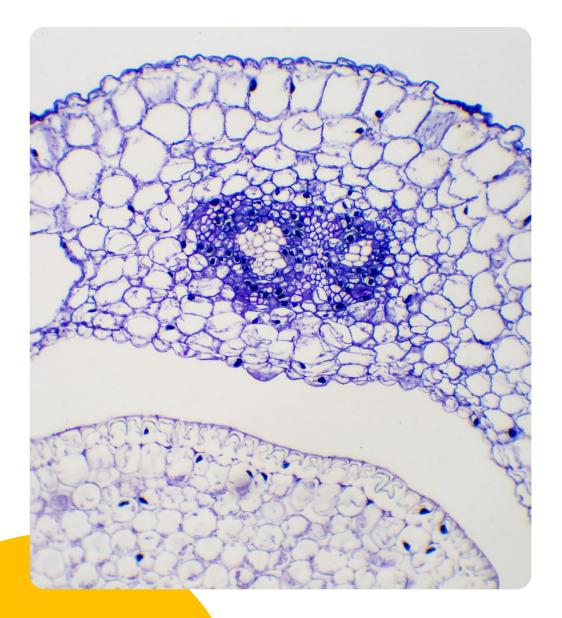
(1996) Meanwoold Highware, Judie 2022, Tampie, R. (1998). 100 March 200 March Characterian, N. 1987 Photos (2.12) (2010) (211) (200) (201-000)

Ehrlik, Orning Nucl. 342342-848 Remodel & Received: 8717/2002 Date Reported: 8/86/2022 Date President, 8/3 0/2002 Preparted By: C.Mitice

Figure 2: Bactoria observed in sample PCRSPD. Ne microplastics were detected.

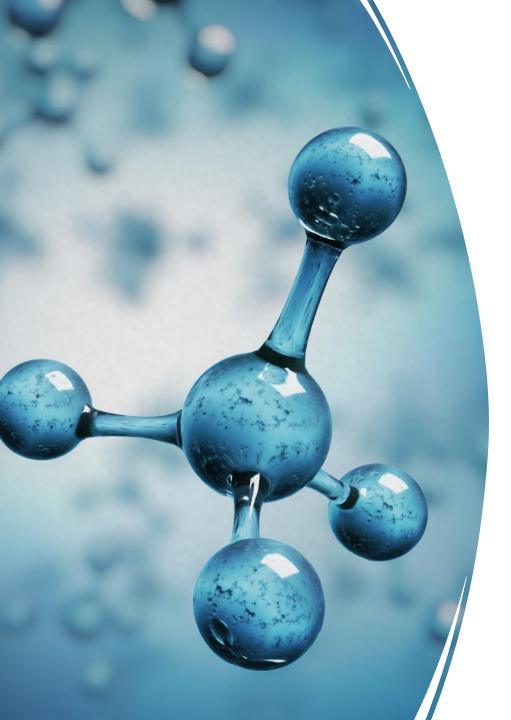
- Simplification (\$2008.88) - Pape Sord Pri-

***This information is used with permission from the original author Dr. Asher Milgrom


Simple fails - ISSERSHOP, Page 5, eT1.

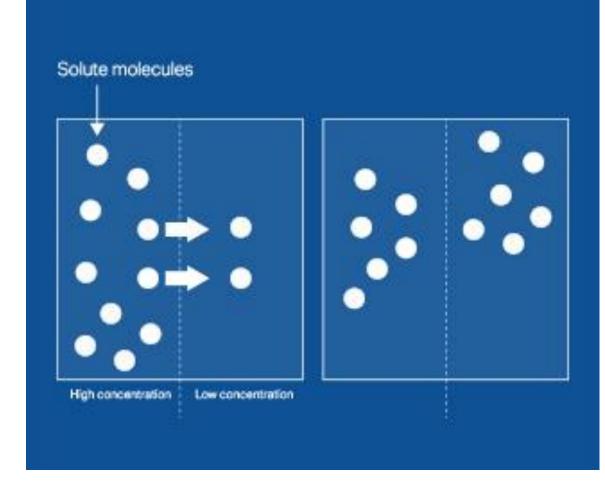
What is the Fluid?

In general, it will be urea, creatinine, calcium, organic phosphate, uric acid, sodium, potassium, chloride, albumin and excess fluid


Recent Stateside studies have found microplastics, yeast, fungi, metabolic waste, damaged cells, and microbes

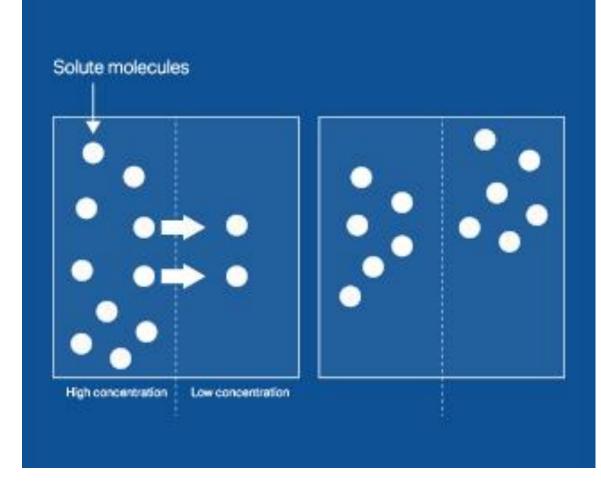
EBOO is NOT Apheresis ****

- Apheresis has many filters to lower LDL, unhealthy cells
- We don't know yet or suspect there is removal LDL during EBOO

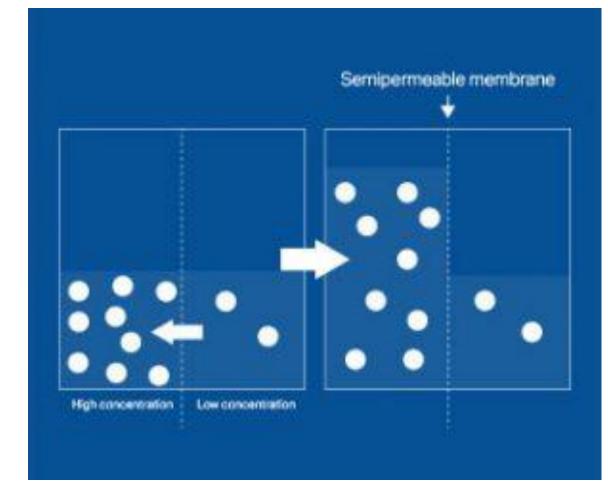


Principles that enable EBOO to work

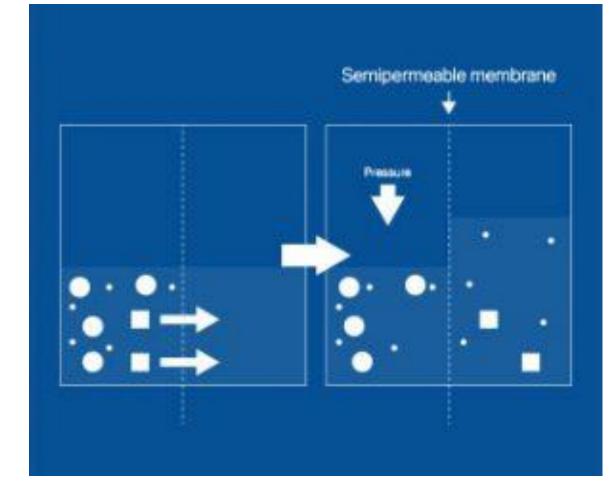
- There are three principles that enable EBOO to work. There are the fluid movements and gas movements.
- The fluid moves through the dialyzer through diffusion, osmosis, and ultrafiltration.
- The ozone and oxygen move through diffusion.


Diffusion

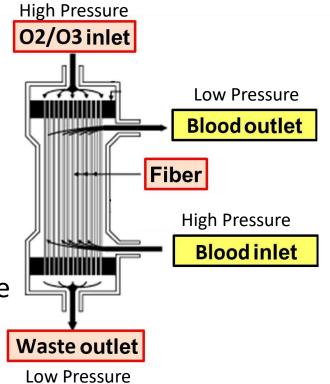
- During diffusion, particles in the areas of high concentration move towards the area of low concentration.
- In EBOO, waste in your blood moves towards gasses in the fibers that has no waste. The amount of waste removed depends on the size of the waste, the size of the pores (holes) in the membrane, and like a tea, the length of treatment.


Diffusion

 The same principles apply with gasses, in this case oxygen and ozone. The gasses are in a higher concentration in the fibers compared to the concentration in the blood. The ozone and oxygen will pass through the fibers and enter the blood.


Osmosis

- During osmosis, fluid moves from areas of high waste concentration to lower waste concentration across a semi-permeable membrane until equilibrium.
- In EBOO, excess waste fluid moves from blood to the waste outlet through a membrane, in this case the hollow fibers, until the fluid level is the same between blood and waste canister.

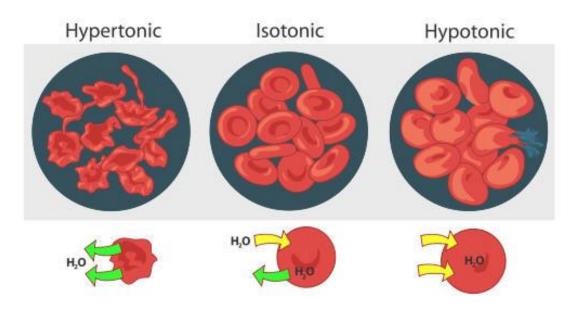

Ultrafiltration

- Ultrafiltration is the convective flow of blood and dissolved solute(waste fluid) down a pressure gradient caused by hydrostatic forces or osmotic forces.
- In EBOO, ultrafiltration removes molecules of waste and excess fluids from blood.

Mechanics of EBOO

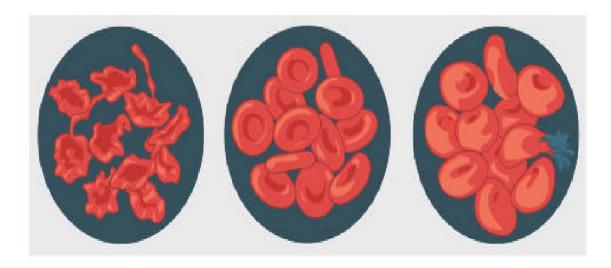
- During an EBOO with the concentration set to 7 gamma, at 1LPM O2 the amount of ozone generated is 420,000 mcg.
- Through diffusion it can pass from the fibers into the blood.
- Through osmosis, diffusion, and ultrafiltration, the waste from the blood can pass through the fibers to exit through the waste outlet.

Diffusion in Red Blood Cells

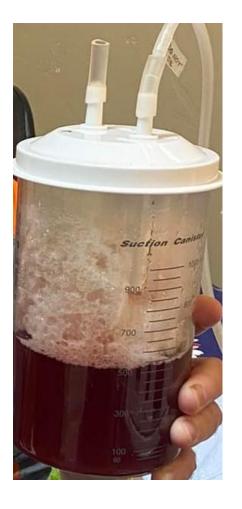

- Red blood cell's(RBC) primary purpose is to transfer oxygen from the lungs to the peripheral tissues of the body. Oxygen diffuses in the lungs into the RBCs to bind with the hemoglobin. One hemoglobin can bid with four molecules of O2.
- The partial pressure of the oxygen determines the affinity of hemoglobin for oxygen. If the partial pressure of the oxygen is high, then the hemoglobin will have a high affinity for it.

Diffusion in Red Blood Cells

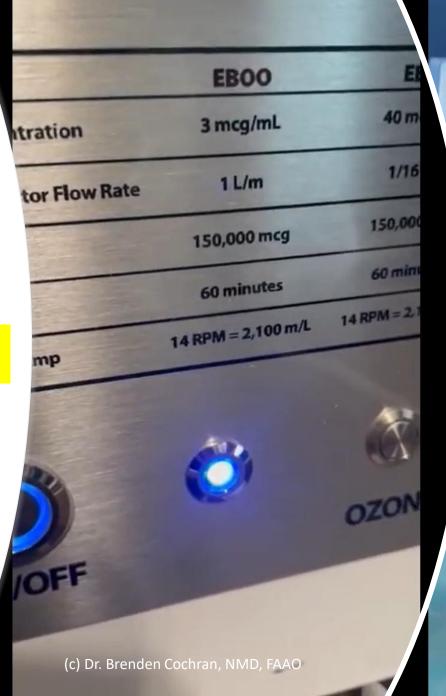
- Red blood cell's(RBC) primary purpose is to transfer oxygen from the lungs to the peripheral tissues of the body. Oxygen diffuses in the lungs into the RBCs to bind with the hemoglobin. One hemoglobin can bid with four molecules of O2.
- The partial pressure of the oxygen determines the affinity of hemoglobin for oxygen. If the partial pressure of the oxygen is high, then the hemoglobin will have a high affinity for it.
- The flow rates of the blood passing though the dialyzer will affect diffusion rates as well. There will be a change in time of exposure, as well as a change in amount of surface area contacted.


Hemolysis

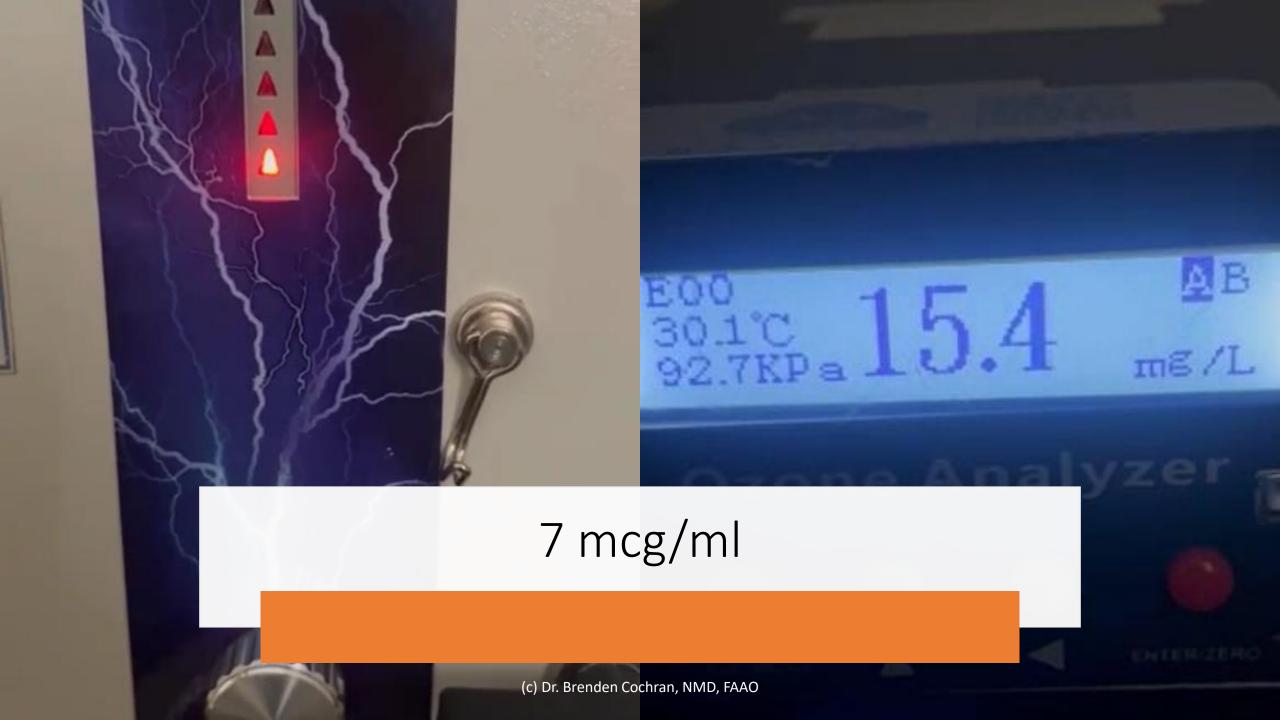
- Hemolysis has been well understood in its relationship with water.
- RBC's in hypertonic(higher concentration) solutions will have the water flow out of the cells faster than it comes in, leading to crenation (shriveling).
- RBC's in hypotonic(lower concentration) solutions will have the water flow into the cells faster than it goes out, leading to hemolysis (bursting).
- Isotonic solutions are in equilibrium, and you will get neither of those reactions.


Hemolysis

- Hemolysis has been well understood in its relationship with water.
- RBC's exposed to a low partial pressure of oxygen will not have an affinity to oxygen, leading to low blood oxygen.
- RBC's exposed to a high partial pressure of oxygen will have an affinity for oxygen, taking it in. In the case of ozone, if too much is available, the hemoglobin will attempt to bond with it, leading to hemolysis.
- The ideal state is equilibrium, where the blood is oxygenated, but not to the point of bursting.


SHOULD NOT LOOK LIKE THIS!

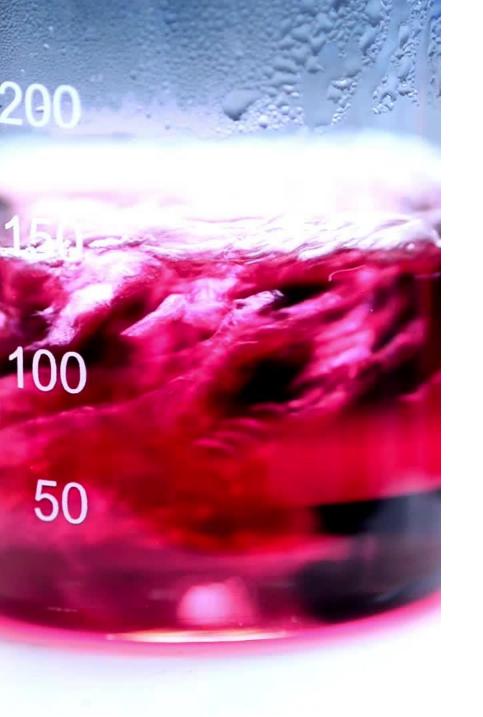
This is overtreatment OR TOO MUCH ozone used to cause lysis of cells!



Are you sure your machine is producing what it says? NOTE: All machines at 1 L/min

Dosage

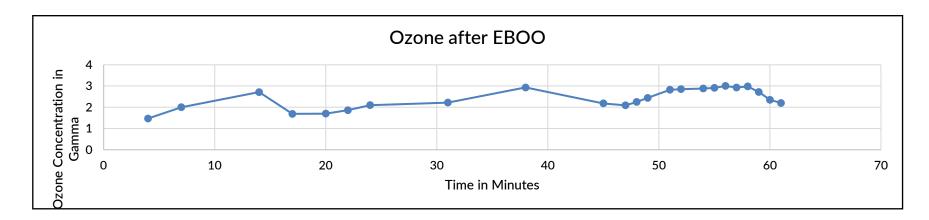
- With all the factors, finding out how much is the correct dose, let alone how much is not practical.
- What is known is how much is produced, and the duration of time.
- The amount of blood moved is determined by the motor speed, and the individual's viscosity of the blood. The needle size does not impact the volume flowed in a period.
- The dosage for a person is the concentration multiplied by the length of time. To calculate the concentration for blood treated, the volume of blood moved will need to be known.
- Counting the drops of blood will not work as the volume of a drop will vary person to person, depending on the properties of the blood itself.
- The viscosity, density, and surface tension of the fluid drop all affect its natural volume: these properties are related to hematocrit (the number of blood cells and particles in the drop), hydration levels, fluid temperature, and surface the drop forms upon.


EBOO Dosage

STRATOS EBOO is able to maximize the amount of ozonation the blood

can safely absorb.

Just how much is absorbed in a standard session? We set out to


- find the answer:
- **EBOO** performed for one hour.
- The ozone concentration was at 7 gamma, with the oxygen flow set to 1 LPM.
- At 7 gamma, for 1 hour, at 1 LPM, 420,000 mcg of ozone is produced.
- Samples were recorded for the duration that ozone that passed to the ozone destructor

Dosage - Absorption

- The next part is the absorption, due to the nature of EBOO, some O3 will be expelled through the was waste outlet into the waste canister, and ultimately through the ozone destructor.
- The ozone that passes through to the blood, will react with lipids forming ozonides, as well as interact with the blood(remember the hemolysis slide, too much and there will be red blood cell bursting).
- The condition of the blood will determine how much of gradient exists between the oxygen content in the RBCs and in the incoming ozone gas. The specific condition and observations of the blood should determine the concentration applied.
- Ozone dosages are estimates, especially when it comes to figuring out absorption rates. The half-life of ozone is variable with temperature, pH, the partial pressure in relation to the RBC, and the amount of lipids present to name a few.

EBOO/F Quantity

At 7 gamma, for 1 hour, at 1 LPM, 420,000mcg of ozone is produced 2.403478261 gamma was the average reading for ozone concentration post-EBOO

At 2.40347 gamma on average, approximately. 144,208 mcg of ozone was not absorbed

Approximately 276,000 mcg of ozone was administered in one session

More ozone better?

- More ozone can cause more problems in most ill patients
 - Too much immune stimulation
 - Too much cytokines
 - Too much die off
 - Overwhelming anti-oxidant buffering capacity

Treatments

Patient treatments will range from 1- 10 treatments depending on severity of illness.

NO MORE than 1 treatment per week.

Rarely will need to go beyond 5 treatments

"Gunk" will often bee seen in blood flow

This "Gunk" can be seen more after other detox support or IV chelation days before EBOO treatment.

EBOO should be considered a ProActive strategy to "filtering" and providing ozone/oxygenation to the body.

- Ideal schedule would be quarterly
- Consider this treatment similar to an "oil change" in your car. You are doing proactive changes to prevent the car from breaking down prematurely.

(c) Dr. Brenden Cochran, NMD, FAAO

Pro Active schedule

Twice per year up to quarterly

Dangers

Too high concentration ozone, too much ozone.

- Immune stimulating (herx)
- Overwhelming toxicity elimination pathways
- Overwhelming body's homeostatic antioxidant buffering capacity
- Damaging cells

Infusions under pressure may cause air embolism

Not recommended to use machines that apply pressure

Absolute contraindications

G6PD deficiency (if using ozone)

Acute hemolytic anemia

Heparin allergy

(Wet filters)

• PEG allergy (Miralax)...Polyethylene Glycol

PEG FOUND IN FILTERS

www.houghton.com	GLYCOL ANALYSIS REPORT	HOUGHTON
COMPANY: TRIGEN O3	CONTACT: ANGIE VALDIVIESO	DATE: 23 MARCH 2023
PHONE: 480-241-5818	PROJECT #: HYD23034	
SAMPLE GROUP: KAWASUMI NAME: ID: REF.#: (IF APPLIES)		SAMPLE #: 230435
SPECIFIC SAMPLE: NAME: ID: REF #:	RENAK 1500	*ANALYSIS: FULL ANALYSIS
SYSTEM TYPE:	*GLYCOL TYPE: PROPYLENE	*APPROX. SYSTEM SIZE:
GLYCOL BRAND:	*GLYCOL NAME:	ACCT MANAGER: CUSTOMER SERVICE
formation listed here is copied as is fr	om sample submittal form or label on sample bottle	e, see analysis below for confirmation

THOTENTIES ETTREMTED	(BASED ON % OF GLYCOL)	<u>MOOLIS</u>
% OF GLYCOL	30%	.7%
TYPE OF GLYCOL	Propylene	Propylene
INDICATED FREEZE POINT (MAX)	+10°F	+31"F
PH	9.0-11.0	3.3
RESERVE ALKALINITY (MIN)	5.0 mL	0.0 mL
APPEARANCE		A clear, colorless fluid exhibiting a burnt glycol odor, and no observed sediment

Comments:

The fluid exhibits a concentration of about ...7% Propylene glycol, indicating a freeze point of +31°F. The glycol concentration is below the minimum recommended to prevent bacterial growth. Hydronic fluids below 25% concentration of glycol are subject to bacterial growth/bio film fouling and do not provide adequate freeze/corrosion protection to the system. The pH is below the expected range and the Reserve Alkalinity is below the minimum expected value for a fluid of this type and concentration. The pH is acidic and the fluid may be causing damage to the system. This material is providing neither freeze nor corrosion protection to this system. The sample exhibits an odor reminiscent of burnt glycol and/or glycol degradation products. This material is unfit for use as a Hydronic Fluid and may be damaging equipment.

Recommendations:

Applying Houghton Chemical Corporation's test criteria, we recommend replacing this fluid. Drain the system, flush with water; inspect the system for damage, effect any necessary or desired repairs; clean the system with SECURITY® System Cleaner according to the product directions; and refill the system with SAFE-T-THERM® HD 30% premix. Be sure to flush with water again after cleaning and before refilling the system. If Ethylene glycol is desired, we recommend replacement with WINTREX® 30% premix.

Thank you for utilizing our lab testing services. Your account manager has been copied on these results and will follow up with you soon. If you have any questions, please feel free to contact our Laboratory at 617-254-1010.

Zach Anzalone Laboratory Manager

Form Revision Date 26 October 2018

Manufacturers of Automotive Chemicals And Heat Transfer Fluids. Founded in 1927 by Philip A. Houghton

PEG FOUND AFTER DRAINING AND FLUSHING

HOUGHTON CHEMICAL CORPORATION Head Office: 52 Cambridge Street, Allston, MA 02134 Tel: 617-254-1010 | Toll: 800-777-2466 | Fax: (617) 254-2713 www.houghton.com **GLYCOL ANALYSIS REPORT** COMPANY: TRIGEN O3 CONTACT: ANGIE VALDIVIESO DATE: 19 MAY 2023 PHONE: 480-241-5818 EMAIL: SUPPORT@TRIGENO3.COM PROJECT #: HYD23054 *SAMPLE GROUP: PROPYLENE GLYCOL SAMPLE #: 230512 NAME: ID: REF #: (IF APPLIES) *SPECIFIC SAMPLE: NAME: ID: REF #: PROPYLENE GLYCOL *ANALYSIS: DETERMINE IF PG IS PRESENT *SYSTEM TYPE: *GLYCOL TYPE: PROPYLENE *APPROX. SYSTEM SIZE: BOTTLE *GLYCOL BRAND: *GLYCOL NAME: ACCT MANAGER: BRIAN HUGHES

* Information listed here is copied as is from sample submittal form or label on sample bottle, see analysis below for confirmation

PROPERTIES EVALUATED	RESULTS	
% OF GLYCOL	<1%	
TYPE OF GLYCOL	No glycol detected	
INDICATED FREEZE POINT (MAX)	+32°F	
PH	6.2	
RESERVE ALKALINITY (MIN)	0.0 mL	
APPEARANCE	A clear, colorless fluid exhibiting no objectionable odor, and no observed sediment	

Comments:

The fluid exhibits either no glycol or an insufficient amount of glycol to detect by gas chromatography, indicating a freeze point of +32°F by optical refractometer. There was no glycol detected, therefore the flush seems to have been successful.

Thank you for utilizing our lab testing services. Your account manager has been copied on these results and will follow up with you soon. If you have any questions, please feel free to contact our Laboratory at 617-254-1010.

Zach Anzalone Laboratory Manager

Form Revision Date 26 October 2018

Manufacturers of Automotive Chemicals And Heat Transfer Fluids. Founded in 1927 by Philip A. Houghton

Relative contraindications only use in special situations

Uncompensated diabetes

Recent Acute myocardial infarction (within 6-8 weeks)

Acute toxic hyperthyroidism

Thrombocytopenia (< 50,000)

Severe cardiovascular instability

Acute alcohol intoxication

Hemorrhage

Convulsive states

Hemochromatosis

Active treatments giving copper or iron

Pregnancy

Pre Work up

History

Physical Exam History of bleeding disorders Labs: (Within 4-6 weeks minimum, maybe sooner)

- CBC
 - Plt > 130
- CMP
- Quantitative G6PD
- Lipids
- *PTT, PT, INR (Highly recommended)*
- Possible clotting factors if suspect in history

Medications? And timing....

Pre-Care

Skip supplements the morning of treatment

Take and 81 mg aspirin OR Neprinol AFD (2-3 caps)

- If patient is NOT on anti-coagulant therapy
- Poor circulators may need 1 hydrogen tablet in 8 ounces before treatment

Start hydrating 72 hours before procedure

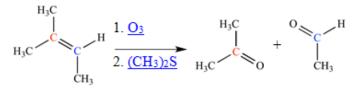
NO FASTING. Eat well at least 1-2 hours before procedure.

No smoking day of procedure

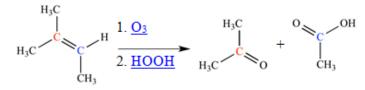
No alcohol before the procedure

Other Prep Considerations

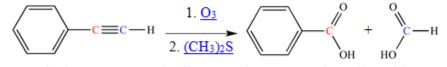
Supplements we recommend to improve your experience:


(Starting 1 week before therapy)

Vessel Forte (Designs for Health): 2 caps twice daily


Omega-3 fish oils (2000 mg)

Illustrated Glossary of Organic Chemistry


Ozonolysis: A reaction in which a carbon-carbon <u>pi bond functional group</u> reacts with <u>ozone</u>, resulting in <u>oxidative cleavage</u>. The <u>reactant</u> is usually an <u>alkene</u> or <u>alkyne</u>, but a <u>benzene ring</u> can also be made to react under forcing conditions.

In <u>alkene ozonolysis</u> with <u>reductive</u> workup, an <u>alkene</u> carbon bearing a hydrogen atom becomes an <u>aldehyde</u>, and an <u>alkene</u> carbon bearing two carbons becomes a <u>ketone</u>.

In <u>alkene ozonolysis</u> with <u>oxidative</u> workup, an <u>alkene</u> carbon bearing a hydrogen atom becomes a <u>carboxylic acid</u>, and an <u>alkene</u> carbon bearing two carbons becomes a <u>ketone</u>.

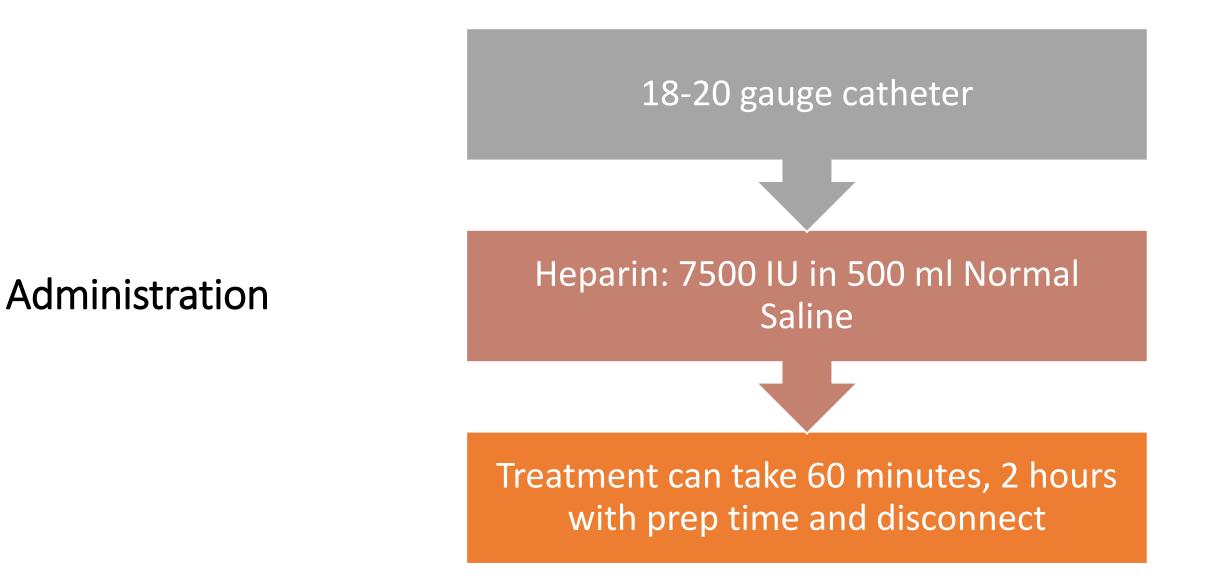
<u>Alkyne ozonolysis</u> converts each <u>alkyne</u> carbon to a <u>carboxylic acid</u>, regardless of reaction workup.

Alkene/Alkyne Drugs

Vitamin A
Acitretin
Alitretinoin
Methoxsalen
Adenosine
Naftifine
Tretinoin/Isotretinoin
Etretinate
Colesevelam
Zucapsaicin
Astaxanthin
Ketobemidone
Zeaxanthin
Lycopene
Piperine
Crocin
Terbinafine
Efavirenz
noretynodrel

Post Care

Hydration + Electrolytes


Light foods

Leave compression bandage on for 2-4 hours

Leave heparin wrist band on until next morning

We record how much heparin patient recieved

(c) Dr. Brenden Cochran, NMD, FAAO

Best Treatment

Start with first treatment only filtration and oxygen (5-10 minutes of 3 mcg/ml setting)

As tolerated then can ramp up to 7 mcg/ml ozone over the course of the hour treatment.

End of treatment

+

0

- Commonly will hang a bag of 100 ml Normal Saline
 - B complex
 - B12 and/or NAD 50-100 mg
 - Methylene Blue
 - Lipoic Acid Mineral Complex (Poly MVA)
 - Biologic allograft as (IV Push and/or C-Shot)

Depending on the individual patient's needs, this is a sample of Lyme protocol patients will do 3-5 weeks on average

Sample Program Schedule - Parasites – Mold – Lyme						
Week 1						
Day 1	Nutrient Bag with or without NAD + Phosphatidylcholine + Glutathione					
Day 2	250ml N/S, Vitamin B-17/(Artemesinin OR Artesunate) (if available) with Vitamin C drip 25-50 gram					
Day 3	Nutrient Bag with or without NAD + Phosphatidylcholine + Glutathione OR Chelation bag + Glutathione					
Day 4	250ml N/S, Vitamin B-17 or (Artemesinin OR Artesunate) (if available) or Vitamin C 25-50 grams					
Day 5	EBOO (followed by B complex, B-12 or LAMC) optional EXOSOMES/Biologic Allograft (optional)****FDA regulations concerning HCT/P 361 products must be adhered to.					

Depending on the individual patient's needs, this is a sample of Post-Covid Long-haul or Vaccine Injury protocol patients will do 3-4 weeks on average At home using (Topical Cyclodextrin-Glutathione spray daily, proteolytic enzymes, and bioflavonoids)

Sample Program Schedule – COVID long haul or Vaccine Injury

Week 1						
Day 1	Nutrient Bag with or without NAD + Phosphatidylcholine + Glutathione (HBOT 2 ATM)					
Day 2	IV Methylene Blue with Light therapy 820 nm/620 nm					
Day 3	Nutrient Bag with or without NAD + LAMC + Glutathione (HBOT 2 ATM)					
Day 4	250ml N/S, (Artemesinin OR Artesunate) (if available) or Vitamin C 25-50 grams (HBOT 2 ATM)					
Day 5	EBOO (followed by B complex, B-12 or LAMC) optional EXOSOMES/Biologic Allograft (optional)****FDA regulations concerning HCT/P 361 products must be adhered to.					

Depending on the individual patient's needs, this is a sample of Cardio/Endothelial Support protocol patients will do 6-8 weeks on average then re-evaluate

Sample Program Schedule

Week 1						
Day 1	Chelation bag with NaEDTA + Glutathione					
Day 2	Remineralization IV					
Day 3	ay 3 Chelation bag with NaEDTA + Glutathione					
Day 4	Phosphatidylcholine + Glutathione					
Day 5	EBOO (followed with LAMC) optional EXOSOMES/Biologic Allograft (optional)****FDA regulations concerning HCT/P 361 products must be adhered to.					

Depending on the individual patient's needs, this is a sample of Oncology Support protocol patients will do 6-8 weeks on average then re-evaluate

Sample Program Schedule						
Week 1						
Day 1	Nutrient Bag + LAMC+ IV Mistletoe					
Day 2	250ml N/S, Vitamin B-17 or Artesunate (if available) with Vitamin C drip 50-100 gram					
Day 3	IV Mistletoe OR Phosphatidylcholine					
Day 4	250ml N/S, Vitamin B-17 or Artesunate (if available) with Vitamin C 50-100 grams					
Day 5	EBOO (followed with LAMC) optional EXOSOMES/Biologic Allograft (optional)****FDA regulations concerning HCT/P 361 products must be adhered to.					

Depending on the individual patient's needs, this is a sample of Neuro-Inflammation protocol patients will do 3-5 weeks on average

Sample Program Schedule – Neuroinflammation						
Week 1						
Day 1	Nutrient Bag (Neuro) + Phosphatidylcholine + Glutathione					
Day 2 LAMC 5 to 40 ml						
Day 3	Nutrient Bag + Phosphatidylcholine + Glutathione					
Day 4	Curcumin 200-400 mg					
Day 5	EBOO (followed by B complex, B-12 or LAMC) optional EXOSOMES/Biologic Allograft (optional)****FDA regulations concerning HCT/P 361 products must be adhered to.					

Total Volume: 277 mL

Osmolarity: 286 mOsm/L

250 mL	Sterile Water	2 mL	Taurine (50 m/ml)
10 mL	Ascorbic Acid (500 mg/ml)	2 ml	Dexpanthenol (250 mg/ml)
4 mL	Magnesium Chloride 200 mg/ml	5 ml	8.4% Na Bicarbonate
1 ml	Calcium Chloride 100 mg/ml	1 ml	Pyridoxine (100 mg/ml)
1 ml	B-Complex	1 ml	Hydroxocobalamin 5 mg/ml

Infusion Time: 45-60 minutes

Rx: Neuro-Inflammation Support

Total Volume: 302 mL

Osmolarity: 501 mOsm/L

250 mL	Sterile Water		
20 mL	Ascorbic Acid (10 grams)	5 mL	Dexpanthenol (250 mg/ml)
4 mL	Magnesium Sulfate 500 mg/ml	3 ml	8.4% Na Bicarbonate
1 ml	Calcium Gluconate 100 mg/ml	2 ml	Thiamin (100 mg/ml)
1 ml	Potassium Chloride 2 mEg/ml	1 ml	Hydroxocobalamin 5 mg/ml
5 ml	Glycine (50 mg/ml)	10 ml	Taurine (50 mg/ml)
1 ml	B Complex		

Infusion Time: 45-75 minutes

Rx: Chelation bag NaEDTA

Total Volume: 557 mL

Osmolarity: 304 mOsm/L

500 mL	Sterile Water		
15 mL	Ascorbic Acid (500 mg/ml)	2 mL	Dexpanthenol (250 mg/ml)
2 mL	Magnesium Sulfate 500 mg/ml	15 ml	8.4% Na Bicarbonate
10-15 ml	Disodium EDTA (150 mg/ml)	1 ml	Pyridoxine (100 mg/ml)
2 ml	Potassium Chloride 2 mEg/ml	1 ml	Hydroxocobalamin 5 mg/ml
2 ml	B Complex	2 ml	Taurine (50 mg/ml)

Infusion Time: 120 - 180 minutes

Note EDTA calculations can be changed based on body weight and kidney function.

Do not run faster than 2 hours with NaEDTA.

You can use CaEDTA in smaller bag 250 ml, and run over 90 minutes

Rx: Remineralization

Total Volume: 570 mL

Osmolarity: 297 mOsm/L

500 mL	Sterile Water	1 ml	MTE
10 mL	Ascorbic Acid (500 mg/ml)	2 mL	Dexpanthenol (250 mg/ml)
5 mL	Magnesium Sulfate 500 mg/ml	3 ml	8.4% Na Bicarbonate
10 ml	Calcium Gluconate 100 mg/ml	1 ml	Selenium (200 mcg/ml)
5 ml	Potassium Chloride 2 mEg/ml	1 ml	Hydroxocobalamin 5 mg/ml
		6 ml	Taurine (50 mg/ml)
3 ml	B Complex	1 ml	Zinc Chloride or Sulfate (10 mg/ml)
25 ml	Sodium Bicarbonate 8.4%		

Infusion Time: 60-90 minutes

Phosphatidylcholine

Nutrient	mg/mL	mL	mOsm/mL	mOsm*vol
1. PTC	35-50 mg	**	0.3	
2. D5W 5% Dextrose in Water (Most are also stable in 0.9% Normal Saline		250- 500	0.25	
Totals:				

Est. Treatment time: 1.5 hours Final osmolarity: Approx. Iso-osmolar Desired drip rate: 3-4 mL/min

Technical notes:

1.This solution may be cloudy. Make sure PTC and D5W are both at room temperature before mixing, this will reduce the tendency to any cloudy precipitate
2.Glutathione should be diluted with an equal volume SWI USP and mixed well prior to push. Start with 600 mg and increment dose to a maximum of 3600 mg.
3.For cardiovascular, liver and neurologic disease use the schedule below.
Treatment No 1: 10 mL PTC
Treatment No 2: 17.5 mL PTC
Treatment No 3-20: 25 mL PTC

Rx: 25 Gram IVC

500 mL	SWI	
50 mL	C-500 (25 grams)	
1	Calcium Chloride (1.36 mEq)	
2	Magnesium Chloride (3.94 mEq)	
1	Potassium Chloride (2 mEq)	

Total Volume: 554 mL

Osmolarity: 545 mOsm/L

Est. Treatment time: 1.5-2.5 hours

Rx: 50 Gram IVC

500 mL	SWI
100 mL	C-500 (50 Grams)
3	Calcium Chloride (4.08 mEq)
5	Magnesium Chloride (9.85 mEq)
4	Potassium Chloride (8 mEq)

Total Volume: 612 mL

Osmolarity: 1001 mOsm/L

Est. Treatment time: 2-3 hours

Rx: 75 Gram IVC

750 mL	SWI
150 mL	C-500 (75 grams)
4	Calcium Chloride (5.44 mEq)
7	Magnesium Chloride (13.79 mEq)
6	Potassium Chloride (12 mEq)

Total Volume: 917 mL Osmolarity: 1006 mOsm/L

Est. Treatment time: 3-4 hours

Rx: 100 Gram IVC

1000 mL	SWI
200 mL	C-500 (100 Grams)
5	Calcium Chloride (6.8 mEq)
10	Magnesium Chloride (19.7 mEq)
8	Potassium Chloride (16 mEq)

Total Volume: 1223 mL

Osmolarity: 1007 mOsm/L

Est. Treatment time: 3-4 hours

Treatment Combo

Some combined with UBI or Hemealumen

(c) Dr. Brenden Cochran, NMD, FAAO